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Abstract

Fast autonomous flight through cluttered environments is an active re-
search problem involving challenges in state estimation, localization, con-
trol, and planning. State-of-the-art algorithms in these respective fields
still pose limitations in computation time and complexity, rendering a typ-
ical modular pipeline unusable at high speeds unless specifically tuned for
the hardware setup. Furthermore, motion blurred sensor information can
result in uncertain local map and obstacle information which can be risky
in fast flight. We propose a learning based local planner that commands
high-level control actions based on an approximation of local map un-
certainty calculated directly from an onboard camera. Experiments were
done in a photorealistic simulation environment with a standard configu-
ration quadrotor. The reinforcement learning framework avoids an over-
engineered reward function by only including positive rewards for for-
ward flight and penalties for collisions. Current results achieve marginally
higher task success rate when an estimate of the local map uncertainty is
provided to the learner, and also variations in the drone’s velocity when
noise is added to the depth image. Further experimentation and analy-
sis is necessary to fully understand these difference in behavior and their
utility.

1 Introduction

Fast flight in unknown environments is a very challenging task. A typ-
ical robotics approach is generally modular, comprising of separate state
estimation, localization, control, and planning blocks. However, the lim-
ited computation and sensing capabilities possible onboard a lightweight,
fast moving quadrotor can produce motion-induced sensing artifacts that
result in incomplete information. These can cause inaccurate estimates
of obstacles and other surroundings, which can be catastrophic at high
speeds. Such failures might be avoided by traveling at slower speeds,
thereby improving the fidelity of sensor measurements. A simple solution
to this problem would be for an agent to always travel at lower speeds;
however, such an approach forgoes the dynamic capabilities of quadro-
tors, and is not optimal in terms of time to reach a goal position. An
agent behaving optimally might instead choose to modulate its velocity
and heading according to its own uncertainty in the environment, the same
way a person might walk slowly with arms outstretched along a wall in
an unlit room.

For an agent navigating an unknown environment, a mapping system
is critical. Occlusions and noise in depth images and errors in fusion
can cause standard mapping algorithms to produce incomplete maps. The
uncertainty in these maps inherently constrains the robot’s motion; if the
robot does not know what lies to its immediate left, it is obvious that it
should not travel quickly in that direction without first turning to scan it.
We therefore propose a system that reacts to uncertainty by altering its
velocity and heading based on the output of a mapping algorithm.

In this work we specifically focus on uncertainty produced by the
perception system. An example visualization of this uncertainty from our
method is shown in Figure 1.

2 Related Work

Recent work has involved specialized hardware and software components
to deal with these issues, but also delved into learning to adapt to the new
regime of fast flight. We aim to use learning to achieve safe, fast flight
through an unknown and cluttered environment with just a single onboard
vision sensor.
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Figure 1: A sequence of images showing map uncertainty as the drone
approaches a box in an otherwise clutter-free environment. Note that even
though ground truth depth was fed into the mapping framework, it still has
uncertainty due to the motion of the drone. (Darker shades indicate less
uncertainty.)

Deep reinforcement learning is becoming increasingly popular for
learning control policies in an unsupervised setting for performing nav-
igation tasks. In [12] the authors trained a Deep Deterministic Policy
Gradients algorithm[10] to learn a continuous control policy for visual
navigation of Biped Humanoid robot using only RGB images.The paper
also demonstrates successful Sim2Real transfer of the learned policy. In
[6] an Proximal Policy Optimization[15] is used to learn a navigation pol-
icy in simulation for UAV in discredited action space. Soft Actor Critic
Algoritthms [3] uses an off policy maximum entropy RL framework to
train a stochastic actor and have been shown to have better convergence
properties.In [4] the authors also train a minitaur using SAC to achieve
quadrupedal locomotion with only two hours of real world training data
or 160K environment steps.

One of the more successful works in using a typical robotics modular
system for fast quadrotor flight is [13], in which each particular block in
the pipeline is adjusted to operate at low computational strain and time.
Here, they were able to reach speeds of around 3m/s in cluttered environ-
ments and up to 18m/s in open areas. Custom, high speed hardware can
also relieve computation requirements of the fast flight problem [1], but
this might not always be available on a given quadrotor platform. In [2]
an integrated perception and control method to avoid errors in state esti-
mation. [11] presents a sensing-limited approach that includes a safe stop
policy to guarantee collision avoidance. We hope to expand on this type
of work by avoiding hand-designed safe planners and instead encoding
safe flight into a learned policy.

There has been significant past work on using traditional trajectory
optimization style methods to handle uncertainty. Many methods generate
plans using motion primitives. [14] compose a set of motion primitives
and generate plans and velocities by incorporating information about the
object density in the map. [18] formulate the problem as searching for
an optimal B-spline over a voxel grid and try to maximize the distance to
obstacles, but do not explicitly incorporate perception uncertainty.

There is also significant recent work on using learning to control
UAVs in various environments. In [9] the authors trained a quadrotor
to generate a heading and velocity based on monocular camera image in-
put to a convolutional neural network (CNN) in simulation and the real
world. The maximum speed was 3m/s with a near perfect success rate on
a real-world track on which it was trained. [16] uses a deep reinforcement
learning (DRL) framework to perform obstacle avoidance by using tem-
poral attention to encode memory into the system. This particular study
does not consider fast flight. [8] explicitly uses uncertainty for obstacle
avoidance, but this uncertainty is approximated from DRL and incorpo-
rated into a collision avoidance cost function. This contrasts with our
proposed work in which we aim to use the uncertainty coming from a lo-
calization module that is agnostic to the environment in which the system
was trained.
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Figure 2: (a) Forest environment and (b) warehouse environment in
Flightmare
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Figure 3: (a) Actor function (b) stochastic critic policy.

3 Approach

Our approach includes a standard quadrotor in a new photorealistic sim-
ulator. We use a standard robotics framework (ROS) and correspond-
ing image handling and mapping packages, followed by a reinforcement
learning framework that can train quickly on a desktop computer with an
AMD Ryzen 9 3900 processor and NVidia RTX 2080 GPU.

3.1 Simulation Environment

We are using the Flightmare quadrotor simulator [17] which uses the Ro-
torS simulator paired with Unity for photorealistic environment render-
ing. This package includes a reinforcement learning API and a variety
of sensors to be used on the simulated UAV. The two simulated environ-
ments of interest are shown in Figure 2. The forest environment provides
rich training examples due to the varied terrain, shaded regions from trees,
and small obstacles such as branches and leaves that might induce a larger
uncertainty measurement of the environment. However, we perform ini-
tial training and experimentation in the simpler warehouse environment
to verify each component of our system and also due to the reduced com-
putation strain for graphics rendering.

Using this new simulator does pose some challenges. For example,
in the version we started using, collision detections are not ported into
Flightmare from Unity for use in the training pipeline. In this case, we
had to rely on a collision detector using the onboard depth camera which
was not always reliable. Another issue was a misalignment of the depth
image with the RGB image, which we were able to resolve by manually
correcting the rotation angle between the frames.

3.2 Mapping and Uncertainty Estimation

A RGBD sensor rigidly mounted on the quadrotor feeds into a mapping
module that returns some estimate of the uncertainty in the robot’s sur-
rounding scene. We first add noise to the ground truth depth frame ob-
tained from Flightmare, followed by a fixed-lookahead step where we
discard certain points that are further away from the quadrotor in order to
simulate a sensor with a short range. Next, we convert this noisy depth
image into a laser scan point cloud representation, which is fed into Oc-

tomap [7] (along with the ground truth pose of the quadrotor) which fuses
these point clouds over time and outputs a probabilistic occupancy grid as
a map. To obtain our final uncertainty image at each timestep, we query
the occupancy probability from Octomap at each point in the current point
cloud p(x,y,z), and fill the uncertainty image U as follows:

[x′ y′ z′] = K[x y z]T

i =
x′

z′

j =
y′

z′

U(i, j) =−p(x,y,z)log2(p(x,y,z))

Where K is the camera intrinsic matrix that maps points from the world
frame into the camera frame. Naturally, U(i, j) is maximized when the
occupancy probability is 0.5, which is when the mapping framework has
no knowledge of if the node is occupied or is free space.

It is worth noting that by this calculation, the uncertainty was not
calculated for free space nodes due to the fact none of the points in the
point cloud actually occur in free space. Therefore, this version of the
uncertainty image only represents the uncertainty about "occupied" points
in the Octomap. We discuss our solution to this in Section 4.5.

3.3 Learning Framework

The uncertainties in the occupancy grid will be stacked with the RGBD
portion of the camera frame and inputted into a DRL framework that out-
puts a heading and velocity, as done in [9]. Low-level control is done by
the built-in quadrotor control algorithms. We choose a model-free method
over model-based, so that we can avoid having to learn the dynamics in-
volved in the aggressive flying task. Since we are training in simulation,
sample efficiency is not a primary concern and enables us to run many tri-
als safely. We further choose Soft Actor Critic Algorithm [3] as it allows
us to learn policy in a continuous action space.

The reward function is a weighted sum of both the intrinsic and ex-
trinsic rewards. The agent receives extrinsic rewards when the episode
terminates successfully upon reaching the goal state or when the agent
crashes into an object in the environment. The intrinsic reward is cal-
culated as the weighted difference between the distance to goal position
before the the after executing the action in the simulator. This provides
incentive to the quadrotor to move in the direction of the goal position as
it gives a positive reward whenever the agent moves closer to goal and
negative reward when it moves away. The weight hyper-parameter is set
such that the overall intrinsic reward the agent gets will be less than the
positive extrinsic reward.

R =


+r, successfully reaches goal
−r, upon collision with obstacles
w×(change in dist to goal), otherwise

We terminate an episode when the agent successfully reaches the goal
position or when the agent crashes into an obstacle or when the agent fails
to reach the goal with in a certain time limit.

We use ResNet-18[5] pretrainined on Imagenet as our backbone due
to limited compuational resources for both the actor and critic. The cur-
rent displacement required to reach the goal is then appended to the output
of the backbone. This latent representation of the state is then fed into a
multi layer perceptron module which predicts the q-value in case of critic
and mean and standard deviation of the heading and velocity in case of
the policy. The network architectures are shown in 3

4 System Validation Experiment

In order to assess the validity of our training pipeline and control scheme,
we set up a toy problem of avoiding the boxes in the warehouse environ-
ment. Figure 4 shows the four representations of the object from onboard
sensors and the entropy calculation.
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Figure 4: Onboard representations of box obstacle: (top-left) RGB image;
(bottom-left) depth image; (top-right) Octomap voxel grid; (bottom-right)
entropy frame (without free space correction).

4.1 Training Setup

For our toy problem, we structured a task such that the drone starts 4m
away from the boxes, directly facing them. The goal position is any point
20m ahead of the current position. Restrictions are that the agent must
stay within 20m laterally of the starting position, 1.5m of the original
altitude, and not move more than 5m backwards. Any deviation beyond
this defined space is considered a crash.

For the purposes of RL, an episode begins with the drone at the spec-
ified starting location and ends when either the drone crashes (an unsuc-
cessful episode) or it reaches the goal distance (a successful episode).
After each episode the map is completely reset, including both the voxel
inhabitances state and uncertainties.

We trained all of our policies in two stages. In the first stage, each
episode is reset with the drone facing directly forward at the same start-
ing position. In the second stage of training, we initialize the networks
with the first stage’s weights and every new episode resets the drone with
a (small) random heading at a random position. The heading distribu-
tion was a Gaussian centered around 0 (facing forward) with a standard
deviation of π/24; the x- and y-positions were centered around the first
stage’s starting position with perturbations following a Gaussian distri-
bution with standard deviations ranging from 0.5 to 1.0. The purpose of
this is in order to let the policy learn a path to completion in an easy task
before introducing the more difficult problem of starting from a random
position.

The hyperparameters for training are shown in Table 3.

4.2 Experiments

For our first experiment, we trained four policies in which we varied the
noise added to the depth image and changed whether or not the uncer-
tainty image was given as an input to the policy. We compared these poli-
cies using two performance metrics: the percentage of episodes where
the policy reached the end goal, and the average commanded velocity per
iteration, as a rough gauge of the aggressiveness of the policy.

As a note, the uncertainty referred to in this section is the calculation
shown in Section 3.2.

4.3 Evaluation and Results

All policies were evaluated for 100 episodes in the same setting they were
trained in (i.e., the noiseless, RGBD-only policy was also tested with
noiseless input). The results for the toy problem are shown in Tables 1
and 2. Note that the + f designation indicates a free-space correction in
the entropy calculation which is further discussed in Section 4.5.

Policy RGBD RGBDU RGBDU+ f

Ground truth depth 0.57 0.59 0.55
Noisy Depth 0.47 0.50 0.52

Table 1: Success rate of policies over 100 evaluation episodes

Policy RGBD RGBDU RGBDU+ f

Ground truth depth 1.58 1.50 1.47
Noisy Depth 1.56 1.57 1.48

Table 2: Average velocity per iteration of policies over 100 evaluation
episodes

We can see that the ground truth RGBD policy not only has a high
success rate, but also exhibits the highest overall velocity, indicating that it
is able to fly aggressively but also avoid obstacles. The noisy RGBD pol-
icy is the worst performer, showing high velocity but an inability to avoid
obstacles. Notably, the ground truth RGBDU policy shows the highest
success rate but also the lowest average velocity, indicating that it learns
to moderate its aggression around the obstacles and also to avoid them.

Interestingly, including RGBDU in the noisy case slightly improves
the performance, but does not moderate the aggression, indicating that in
the noisy case, only calculating the uncertainty of objects and not the free
space might be insufficient, or that extra supervision might be needed.

4.4 Discussion

There are a number of confounding factors in this experiment that war-
rant further discussion and experimentation. Firstly, we observe that our
training does not fully converge within the number of allotted episodes,
as shown in Figure 5. This is to be expected, since computation limita-
tions constrained the amount of training we could accomplish on all of our
policies, and further prevented extensive hyperparameter tuning. In par-
ticular, we used an older variant of SAC in which the α parameter, which
controls the noise in the policy, was set manually. Future work includes
further hyperparameter tuning in order to refine our results.

Second, for the box avoidance task, it is critical that the drone receive
a negative reward every time it crashes into the box. However, due to the
lack of a prepackaged, ground truth collision detector in Flightmare (at
the time of running this experiment), we were forced to use an imperfect
collision detector from the ground truth depth image. One of the key
failures of our homespun collision detector was that it sometimes allowed
the drone to go through the box if it enters exactly orthogonal to the box’s
surface. This sometimes incentivizes the policy to approach the box even
if in most cases it would result in a collision. The noisy, RGBDU policy
in particular relied on this exploit quite frequently, which could explain
its high aggression. We discuss this further in Section 5.

Finally, as mentioned in Section 3.2, the uncertainty calculation cur-
rently only outputs the uncertainty for occupied voxels in the Octomap,
due to using the input point cloud in order to calculate the uncertainty im-
age. The results of this can be seen in the bottom right image in Figure 4,
where free space is shown as high-entropy (white) even though Octomap
is most likely certain that those nodes are unoccupied. Because of this,
the uncertainty image mostly acts as a secondary depth image, because
the pixels representing free space are not populated. This gives a rela-
tively uninteresting image to train on, especially since most of the space
in the warehouse environment is free space.

Hyper-parameters Value
max. training episodes 500

extrinsic reward: r 100
intrinsic reward scale 0.5

gamma 0.95
alpha 0.2 - 1

learning rate 0.0001
image dimensions (128 × 128)

max. forward velocity 3 m/s
max. heading ±45 degrees

Table 3: Hyper parameters used for training
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Figure 5: (a) Policy loss and (b) Episode reward for training the ground
truth, RGBD policy displayed in Tensorboard with a smoothing factor of
0.6.

((a)) ((b))

((c)) ((d))

Figure 6: (a) Old uncertainty with ground truth depth (b) Old uncertainty
with noisy depth (c) New uncertainty with ground truth depth (d) New
uncertainty with noisy depth. The images in this Figure are shown after
hovering in place for quite some time, so the uncertainty of the box is low.
(Darker shades indicate less uncertainty.)

4.5 Adjusted Free-Space Uncertainty Calculation

Following our class presentation, we modified our uncertainty calcu-
lation to properly incorporate the uncertainty of Octomap in unoccupied
space as well. The new calculation uses points from the depth image as
opposed to the point cloud. Depth values that are beyond a certain range–
corresponding to free space directly in front of the drone–are capped to
some maximum distance, which is then used to query the Octomap. The
differences between the various uncertainty images is shown in Figure 6.
We can see that the ucnertainty of free space is lower than in the prior
images, but not as low as of the box. Intuitievly, this makes sense as free
space for a depth sensor will always be more uncertain than a solid ob-
ject in front of the sensor. Further work needs to be done to find the best
representation of obstacles vs. free space in the depth image.

We trained two new policies incorporating these new uncertainty im-
ages. In Tables 1 and 2, these policies are referred to as RGBDU+ f . It is
also important to note that these policies use the slightly modified MLP
architecture where the current state of the agent is appended at a deeper
layer.

The new uncertainty images show strong results in both metrics. While
in the noiseless case, the RGBDU+ f shows a comparable (if slightly
lower) success rate, the RGBDU+ f policy shows strong results in the
noisy case, increasing the success rate compared to RGBD by 5%. In
addition, both RGBDU+ f policies greatly decrease the aggressiveness of
flight, confirming our original hypothesis that including uncertainty might
teach the policy to modulate its aggressiveness. However, further exper-
iments are needed to fully understand the effects of including this new
uncertainty.

4.6 New Collision Detector

We ran training tests with a modified collision detector that specifically
triggers a crash if the drone is within an approximate cuboid area centered
on the box in the warehouse environment. However, this seems to greatly
increase the difficulty of the task, causing low success rates in all policies
(even ones that did not rely on this trick). We hypothesize that much
more training data, manifested in greater training time, along with tuning
the harshness of this new collision detector might improve results.

5 Future Experiments

5.1 Reward Functions

Our next and important experiment involves different terms and weight-
ings in our reward function. In addition to having “standard" terms in
our reward function that encode progress towards the goal, we want to
explore how incorporating different terms can influence the behavior of
our agent. In particular, we will first see if the intrinsic reward function
outlined above is sufficient to encode our desired behavior of taking more
certain paths and slowing down in the presence of uncertainty. Another
possibility we want to explore is an explicit penalty term:

p(t) =−v(t)∗u(θt) (1)

(2)

Where v(t) is the velocity of the drone, θt is the current heading, and
u(θ) is the uncertainty encoded by the occupancy grid in the direction of
the current heading. This term would explicitly penalize high velocities
in uncertain directions, while allowing high velocity when the uncertainty
is low. However, a possibility is that this term might also encourage low
velocity all the time.

To increase flight aggressiveness of the agent we want to inversely
scale the positive extrinsic reward with the time taken to complete the
episode. Following the class discussion we also want to include an auto
tuning network for the temperature parameter which will help in reducing
the dependency of the learned policy on α .

In addition, we will explore how the relative and absolute weighting
scales between these terms influences performance.

5.2 Network Architecture

We will also explore how the structure of our networks influences our per-
formance, and whether or not initializing our networks with pre-trained
feature detectors such as ResNet-18 is helpful for the final task.

5.3 Quadrotor Control

While we take inspiration from [9] in learning high-level control com-
mands for the quadrotor, namely a velocity and heading, we do not further
fit a smooth trajectory to these parameters as they do. We have seen some
promising results with our simplified toy problem of avoiding a single,
large obstacle in a largely open environment, but extending this simple
and discontinuous control to navigating a highly cluttered environment
such as a forest might not work. In adapting to a smoother control scheme,
we could still have the learner output a heading and velocity but either fit a
smooth, minimum-snap trajectory to it or even develop a correspondence
to a library of motion primitives.

6 Conclusion

We have some preliminary results as discussed in Section 4.4 that sug-
gest that adding an uncertainty estimate to the learner inputs can maintain
the success rate of the experiment while not reducing the drone’s forward
velocity under noisy depth images. This concurs with our original hy-
pothesis that adding uncertainty estimates of the local map to the learned
model might help control flight aggression and improve performance.

The immediate next steps of this project include evaluating the effi-
cacy of each module in our RL and simulation pipeline, and tuning the
system to be able to handle more complex environments. We hope to
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eventually achieve a controlled, fast flight through a highly cluttered envi-
ronment in simulation, and then port the system to a real-world platform.

Links to our fork of the simulator, the learner code, and roll-out
videos of the learned policies are made available.
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