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Abstract
Contemporary bipedal robots such as Cassie have dozens of degrees of freedom which allow them
to execute agile maneuvers and traverse rugged terrain. Planning these motions can be challenging,
as the center of mass motion must result from proper foot placement and physically valid contact
forces. To address this complexity, state of the art methods for online motion planning find trajec-
tories for reduced order models of the robot. While these simple models reduce performance by
limiting the degrees of freedom of the robot, venturing away from simple models leads to nonlinear
trajectory optimization problems which are intractable to solve in real time. We seek to resolve
this tension between model expressiveness and planning speed by planning with a global affine
approximation of the nonlinear single rigid body dynamics model, and improving the accuracy of
this model by online learning of time-varying residuals to the convex approximation. We analyze
how perception error could affect controller performance by perturbing the switching time of the
hybrid robot dynamics, and how online dynamics learning might aid in recovering from this error.

1. Introduction, Background, and Related Work

In this project, we aim to develop a Model Predictive Controller (MPC) that uses a reduced-order
model of the dynamics of a legged robot and uses learning to make the model more accurate. We
also incorporate perception into the controller, and analyze how errors in perception influence the
dynamics estimator. This is an ambitious project which touches many areas of the robotics literature,
so we will first give an overview of modern approaches to similar perception and control problems.
We begin with an overview of dynamical systems models for legged locomotion, then explore how
these models are used for real-time control, and then finally consider how perception is used to
assist in choosing acceptable foot placement locations.

1.1. Models of Legged Locomotion

Biped robots are commonly modeled as hybrid Lagrangian systems which, during each contact
mode, obey the manipulator equations

M(q)v̇ + C(q, v)v + g(q) = Bu+ JTλ. (1)

Given the computational intractability of realtime trajectory optimization subject to (1), state
of the art online planning methods generally use models like the linear inverted pendulum (LIP)
(Kajita et al. (2001)) or spring loaded inverted pendulum (SLIP) (Blickhan (1989)) as reduced order
models. These models assume that contact forces travel through the center of mass, and therefore
the robot has no angular momentum about it’s center of mass, restricting the class of achievable
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Figure 1: Our simulation environment for the Cassie biped

motions considerably. The single rigid body model commonly used for quadrupeds (Di Carlo et al.
(2018)) allows more dynamic motions and can allow for convex trajectory optimization under mild
assumptions, but applying such a model to biped robots with massive legs is an open area of robotics
research.

1.2. Optimization-based Planning and Control for Legged Locomotion

Online motion planners for bipeds typically plan over foot placements using the step to step dynam-
ics of the LIP or similar reduced order models (Gibson et al. (2021), Chen and Posa (2020)) using
a quadratic program or very small nonlinear program. The continuous dynamics and swing foot
location are then tracked using an operational space controller similar to the formulation introduced
by Wensing and Orin (2013), which considers the full manipulator equations when solving for in-
stantaneous accelerations subject to feasible contact forces. On the other hand, controllers using
the single rigid body model often convert the MPC contact force solution directly to joint torques
using the contact jacobian, or track the contact force using whole body control (Kim et al. (2019)).
Here, we use the former technique, since tracking the pelvis orientation directly is needed to ensure
stability of the robot’s orientation.

1.3. Perception for Locomotion

While blind walking and running controllers have achieved highly robust legged locomotion over
a variety of terrains (Green et al. (2020), Gong et al. (2018), Siekmann et al. (2021)), there are
some scenarios in which perception is needed. For example, legged robots must avoid placing their
feet in potholes, or raise their swing feet higher than normal to traverse steep steps. A number of
approaches have been proposed in the literature to integrate planning into the legged controls stack.
Kim et al. (2020) build a point cloud from onboard perception, and analyze the gradients of the
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terrain to determine regions in which the robot cannot step. Using this information, they adjust
their nominal gait so that footsteps do not fall in untraversable regions. Villarreal et al. (2020) use
a similar approach, except with a learned cost map which incorporates heuristics such as terrain
gradients and height. In addition to these, a variety of supervised- and reinforcement- learning
based approaches have been proposed (Gangapurwala et al. (2020), Yu et al. (2021), Sanghvi and
Taylor (2021)).

2. Methods

In this section, we outline the various methods we used in this project. We will cover the approx-
imations we make of the true underlying dynamics, how we learn time-varying residual models to
make those models more accurate, how we use those dynamics to formulate a convex optimiza-
tion problem for Model Predictive Control (MPC), and how we incorporate perception into this
framework.

2.1. Single Rigid Body Dynamics

We define the state variables p, θ, ṗ, ω, to be the floating base position (which we assume is
coincident with the center of mass), body fixed Z-Y-X Euler angles, floating base translational
velocity, and floating base angular velocity. We denote by r the position of the stance foot in each
contact mode. We take the control input to be the contact force f and a moment (τyz) in the y − z
plane, as in Li and Nguyen (2021), since Cassie has no actuation about the foot x−axis. We make
the approximations from Di Carlo et al. (2018) on small pitch and roll angles, and low angular
velocity. We also assume for now that the robot is walking in a straight line so that we do not need
to generate a yaw trajectory plan. Under these assumptions, the dynamics during stance are given
by:

p̈ =
1

m
f − g (2)

θ̇ = ω (3)

ω̇ = Î−1
((r − p)× f + τyz) (4)

Where m is the mass of the robot and Î is the rotational inertia of the robot expressed in a global
reference frame.

2.2. Linearization for Automatic Footstep Placement

In order to make (4) a linear constraint, quadruped controllers usually pre-specify a trajectory for
foot position relative to the center of mass, r − p. Since foot adjustment is the primary method by
which a biped robot can regulate its speed, and we wish to optimize jointly over footstep locations
and state trajectories, we instead make (4) affine by linearizing the dynamics. We linearize around
a nominal CoM position, p⋆ stance foot location r⋆, contact force f⋆, and contact moment τ⋆ = 0.

These affine dynamics during stance mode s are given by

ẋs = A

[
x
rs

]
+Bsu+ bs (5)
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Where

x =


p
θ
ṗ
ω

 ,u =

[
f
τ

]
,A =


0 0 I 0 0
0 0 0 I 0
0 0 0 0 0

Î−1
[f⋆]× 0 0 0 −Î−1

[f⋆]×



Bs =


0 0
0 0
1
mI 0

Î−1
[r⋆,s − p⋆]× Î−1

ê

 , bs = −


0
0
g

Î−1
((r − p)× f



and ê =

[
0 1 0
0 0 1

]⊤
. We choose the linearization point in each stance mode to be the foot and

center of mass location when standing with a user specified height and foot spread, and f∗ to be a
force supporting the robot’s weight and passing through the robot’s center of mass.

2.3. Learning Time-Varying Residuals for Control

Since A,Bs, and bs obtained through the SRBD do not perfectly match the real dynamics of the
robot, we assume that there exist some time-varying residual matrices Âs(t), B̂s(t), b̂s(t) for which

ẋs = (A+ Âs)

[
x
rs

]
+ (Bs + B̂s)f + bs + b̂s

accurately describes the dynamics of the SRBD model embedded on the real robot.
We adapt our approach from Sun et al. (2021) for an online least squares approach to learning

these residual matrices from data. Our labels for least squares are the true derivatives minus the

nominal derivatives: ẋ−
(
A

[
x
rs

]
+Bsu+ bs

)
, where A,Bs, and b are the nominal single rigid

body dynamics matrices (5). Our independent variables are vectors of the form
[
xt rt ut 1

]⊤,
which are the state, stance foot position, and center of mass force and torque respectively. Therefore,
we solve the following least squares problem:

min
Â,B̂,b̂

∥∥∥∥ẋt −
(
A

[
xt

rt

]
+But + b

)
−
(
Â

[
xt

rt

]
+ B̂ut + b̂

)∥∥∥∥2
Which is actually several least squares problems stacked into one; each column of Â, B̂, b̂ is

the solution to each problem.
When running the least squares online, we keep a history of N datapoints and labels as Cassie

walks. The N datapoints and labels are maintained in a circular-buffer fashion, where at each
timestep when a new state is received, the oldest datapoint and label are removed from the buffer,
all other datapoints are rolled backward in time by one step, and the new state is added as the last
state in the buffer. This allows us to run the least squares online at a high rate, obtaining a residual
that is an accurate local approximation for the true dynamics.

In our experiments, we used two versions of this least squares estimator; one in which the entire
Â, B̂, b̂ are free parameters (referred to as the ”dense” residual), and one in which we leverage the
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block structure of the dynamics to separate the problem into 4 smaller problems, and separately
learn subblocks of Â, B̂, b̂. These subblocks are assembled such that Â, B̂, b̂ have the same sparse
block structure as A,B, b, resulting in many fewer parameters. This version is called the ”sparse”
residual estimator.

For both the sparse and dense estimators, we add a regularization term to the normal equations,
thereby turning our least squares problem into a ridge regression problem.

2.4. Online Single Rigid Body Trajectory Optimization

To find the optimal SRBD state trajectory over a given time horizon, the following trajectory opti-
mization is solved in a receding horizon fashion, where x̃ = x − xdes and ũ = u − u⋆, F is the
friction cone, and G is the set of points which are on the ground:

x1:T = arg min
u1...T ,x1...T , ri

T∑
t=1

(x̃⊤
t Qx̃t + ũ⊤

t Rũt) + x̃⊤
TQf x̃T (6a)

subject to ẋ = Ai

[
x⊤ r⊤i

]⊤
+Biu+ bi, (6b)

ft ∈ F , (6c)

ri ∈ G (6d)

This optimal control problem has been implemented as a convex QP using the Drake interface
to OSQP in C++ and a single rigid body model of the Cassie biped made by Agility Robotics. The
dynamics constraint (6b) is enforced via direct collocation, which can be formualated as a linear
equality constraint for affine dynamics.

2.5. Low-level Tracking Controller

We use an operational space (task space) controller formulated similarly to the impact-invariant
controller presented by Yang and Posa (Yang and Posa (2021)). Because Cassie has 5 degrees of
actuation in single stance, tracking the swing foot position, center of mass position, and pelvis ori-
entation would lead to conflicting control objectives. Therefore we track only the pelvis orientation,
center of mass height, and swing foot position.

2.6. Analyzing Perception for Legged Locomotion

The MPC controller assumes that the robot will place its steps according to some fixed gait sequence,
which may not be optimal in the case of broken terrain. On legged robots, perception is commonly
used to select regions in which it is safe for the robot to step (Kim et al. (2020), Villarreal et al.
(2020)). We model our footstep planner off of that of Kim et al. (2020), in which depth images are
received from onboard ”stereo” cameras (the Drake simulator directly gives us depth images), and
terrain regions are classified as ”not steppable” if the terrain gradient in that region is too high, or
the depth is outside of the kinematic reachability of the robot. If the nominal footstep calculated
by the MPC falls into a ”not steppable” region, then the footstep planner searches the image for
the nearest steppable location to the nominal footstep, and returns the (x, y, z) coordinate. If the
nominal footstep is in a ”steppable” region already, the footstep planner acts as a query that returns
the z height of the queried (x, y) location, since the MPC always assumes flat ground.
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3. Theoretical Background

Here we restate some of the major assumptions from Sun et al. (2021). Since the primary result
is that if the assumptions hold, the controller using the residual dynamics is stabilizing, we will
focus mainly on the assumptions, and empirically validate whether these assumptions are valid in
the following section.

Assumption 1 states, in our scenario, that the controller is stable (for some suitable notion of
stability) if ∥∥∥∥ẋ− (A+ Â)

[
x
r

]
− (B + B̂)u− b

∥∥∥∥ < ϵ.

This essentially means that the controller is stable even if the dynamics model with the residual
dynamics does not perfectly match the real system. This is a reasonable assumption, though for a
complex robot like Cassie and the hierarchical control stack used here, computing a suitable value
for ϵ is generally not feasible except perhaps empirically.

Assumption 2 states that the residuals are smooth over time:∥∥∥B̂t+1 − B̂t

∥∥∥ < δB,
∥∥∥Ât+1xt+1 − Âtxt + b̂t+1 − b̂t

∥∥∥ < δA

As we will see in the following section, δB and δA which satisfy Assumption 2 can be quite large for
this controller, even when t and t+1 are very close together. Therefore, it may not be possible to find
a δA, δB , and ϵ which simultaneously satisfy the assumptions, and the condition of Theorem 1. This
condition requires that C(δA + δB) < ϵ where C is an expression depending on the conditioning of
the OLS estimator used to construct the residual matrices.

4. Experimental Results

4.1. MPC Tracking Performance

Due to model error between the linearized SRBD model and the full robot under closed-loop feed-
back, the MPC without residuals is unstable after a few steps (Figure 2). This could be expected
since control of bipedal robots using the SRBD model is an active research area, especially for
robots such as Cassie, where the legs contribute a non-negligible amount to the total inertia of the
robot. In order to quantify the error in this model, and whether adding residuals might help, we
examine the improvement in dynamics error between the nominal dynamics and residual dynamics
in the next section.

4.2. Least Squares Error

While adding residual estimates of the dynamics could improve the accuracy of the dynamics model
in mid stride, the susceptibility of these residuals to noisy acceleration and force measurements
impact events made using them for control a very brittle strategy (Figure 3), and we were still
unable to achieve stable walking over the time-frame of this project. We see similar susceptibility
to noise in both the sparse and dense estimations.

We also find that the assumption of smoothness in the dynamics residuals over time is a poor
assumption. Figure 4 shows the magnitude of the residual B̂ over four consecutive steps. The same
plot for Â and b̂ are given in the Appendix for completeness.
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Figure 2: Model error leads the MPC to be unstable under the nominal linear SRBD model

Figure 3: Adding residuals improves the accuracy of the dynamics model, though the residuals are
susceptible to noise, especially near impact events. The estimations shown were gener-
ated using a window of 1 MPC time step (140 datapoints from the simulation broadcasting
at 2000 hz.) and a regularization weight of 0.2.

4.3. Perception Error

There has been some prior work on developing theoretical bounds on perception-based estimators
and controllers. Dean et al. (2019) treat perception as a noisy state estimator and develop robust
guarantees for a linear controller that uses perceptual inputs. They show that robustness can be
guaranteed with certain bounds on the state deviation from training data and the slope of the per-
ception map. Due to the hybrid, nonsmooth, nature of even the SRB dynamics, and the fact that
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Figure 4: The residual estimates are nonsmooth, especially near impact events. This makes it diffi-
cult to use them for control, especially MPC with relatively coarse timesteps.

we use perception for planning rather than for state estimation, we focused most of our effort on
experimental evaluations of the effects of perception errors rather than theoretical bounds.

Errors in depth estimation from RGB-D cameras can arise from multiple sources, including:
sensor noise, erroneous intrinsic calibration, and erroneous extrinsic calibration.

Extrinsic calibration refers to the transformation matrix between the coordinate system of the
camera frame and the body frame. We parameterize this transformation with the extrinsic roll-pitch-
yaw euler angles, and the 3D vector describing the translation from the body origin to the camera
origin.

In our experiments, we found that slight perturbations to the intrinsic parameters did not greatly
affect depth estimation, and shot noise is usually not a limiting factor in depth estimation (Sweeney
et al. (2019)). By contrast, a common problem with vision systems, especially on legged robots,
is the difficulty of obtaining accurate extrinsic calibration (Reinke et al. (2019)), which can lead to
incorrect conversion from a point’s location in the camera frame to a point’s coordinates in the body-
fixed frame, causing inaccurate foot placement. Furthermore, due to the rugged nature of legged
locomotion, it is far more likely that the camera gets jostled around, eventually causing deviations
from the nominal extrinsic matrix.

Therefore, our first experiment was to characterize how increasing levels of noise in the extrinsic
matrix affect the average z error of the points converted from the image to body frame. For this
experiment, we separately add i.i.d zero mean Gaussian noise with increasing variance to each of
the 3 components of translation and orientation, and measure the error of the transformed points
compared to those transformed with the nominal transform. Results are shown in Figure 5. As
expected, both the variance and expectation of the error increase linearly with increasing noise
variance. While the amount of noise towards the right hand side of the plot are unrealistic, it shows
that even with translational/ rotational error of 0.02m/0.02rad, it is altogether possible that the height
estimation of the terrain could be off by many centimeters.
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Figure 5: The average error of image points transformed to body frame plotted against calibration
noise variance, for noise added to either the camera translation or rotation. The solid
lines are the medians, while the shaded regions represent the middle two quartiles of the
distribution

4.4. Perception Influence on Residual Estimator

Motivated by the results on how extrinsic calibration error affected perception, we conducted an
experiment to measure how these perception errors would affect the residual estimator. We envi-
sioned a scenario where the perception module informs the planner that the ground is actually a few
centimeters higher than it actually is. Therefore, the planner would plan for a mode switch from the
current stance leg to the next too early, causing the controller to use the wrong set of dynamics for
the timesteps between the assumed footfall and the actual footfall. Results for this experiment are
shown in Figure 6.

We can see that although the error for both the residual and nominal dynamics spikes at t = 0.3,
due to using the wrong dynamics, the estimator is actually able to account for this and adapt the
residual to match the true dynamics quickly, while the nominal (incorrect) model’s error remains
high until the real footfall occurs at t = 0.35. This matches the results shown in Sun et al. (2021),
showing that the least squares estimator is able to adapt quickly to sudden changes in dynamics,
adding a degree of robustness to this type of perception error.

5. Discussion and Conclusion

5.1. MPC Performance and Future Improvements

Most of Brian’s efforts toward this project have been writing code to perform MPC subject to the
nominal linearized SRBD model. The disagreement between Cassie and the SRBD model was chal-
lenging to overcome, and we were not able to successfully use residual dynamics to turn an unstable
controller into a stable controller. Possible extensions which may help in the future include lineariz-
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Figure 6: Norm of prediction error of residual (blue) and nominal (green) models given incorrect
mode switch at t = 0.3s, and residual (orange) given the correct mode switch at t =
0.35s. We can see that even when given the incorrect dynamics at t = 0.3, the residual
model (blue) is able to quickly recover.

ing about a reference gait rather than a static pose when generating the dynamics constraints, and
adopting a less structured approach to learning the dynamics which is able to leverage significant
offline simulation time, such as model-based RL. Finally, it may be worthwhile to consider formu-
lations with fewer assumptions on the angular velocity of the floating base, since these assumptions
limit the robot’s motion to be similar to LIP based models.

5.2. Least Squares Residuals and Perception

We showed that using least squares to learn time varying linear residual models could significantly
improve the accuracy of our SRBD model, and that with a frequent enough update rate, these resid-
uals could mitigate errors in planning induced by an imperfect perception system. However, we
note that the residuals are still extremely noisy during impact events. Future work includes integrat-
ing the residual estimator and proposed footstep planner with the SRBD MPC model, investigating
how model noise can be mitigated during impact events, and investigating more complex perception
systems that involve learning.
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Appendix:

Figure 7: Magnitude of Â and b̂ over the duration of several steps. The b̂ estimate is especially
susceptible to impacts as Cassie begins to fall over.

13


	Introduction, Background, and Related Work
	Models of Legged Locomotion
	Optimization-based Planning and Control for Legged Locomotion
	Perception for Locomotion

	Methods
	Single Rigid Body Dynamics
	Linearization for Automatic Footstep Placement
	Learning Time-Varying Residuals for Control
	Online Single Rigid Body Trajectory Optimization
	Low-level Tracking Controller
	Analyzing Perception for Legged Locomotion

	Theoretical Background
	Experimental Results
	MPC Tracking Performance
	Least Squares Error
	Perception Error
	Perception Influence on Residual Estimator

	Discussion and Conclusion
	MPC Performance and Future Improvements
	Least Squares Residuals and Perception


