
Using Seq2Seq Models to Assemble Reasoning
Modules for VQA

Hersh Sanghvi, Po Yuan Wang
School of Engineering and Applied Sciences

University of Pennsylvania
Philadelphia, Pennsylvania, USA

Abstract—Large Visual Question Answering (VQA) models
suffer from problems such as overfitting and bias. One approach
to combat these problems is to split the task of answering
a question into smaller reasoning operations, also referred to
as functional programs, so that smaller models can be used
for each operation. Recent datasets such as GQA and CLEVR
also explicitly annotate training questions with the functional
programs necessary to answer them. We use these annotations
as ground truth supervision and investigate the use of sequence-
to-sequence (Seq2Seq) models to generate functional programs
directly from VQA questions. We evaluate a variety of models
and compare their performance to a semantic parser which has
been used in previous work. We demonstrate that our Seq2Seq
models are able to regress functional programs that are close to
the ground truth annotations, suggesting that they can be used
in future work involving modular VQA.

I. INTRODUCTION

Visual Question Answering (VQA) has gained attention in
both the natural language processing and computer vision
research communities because it is a difficult problem that
involves multimodal reasoning over both language and images.
Since the advent of deep learning, notable approaches to
solve this problem have ranged from monolithic, end-to-end
style approaches where the question and image are encoded
by sequential networks and convolutional neural networks
(CNNs), to more structured approaches involving structured
fusions of both visual and image features.

One problem with these monolithic approaches is that
large visual and language models are difficult to train, can
incorporate large amounts of biases if the datasets are not
balanced properly, and their outputs are not very interpretable.
To deal with this, one proposed approach has been to represent
VQA problems as functional programs that are sequences of
a small, fixed set of visual functions whose inputs depend
on the text of the question and the features in the image.
These functional programs represent the reasoning process
involved in answering the question using the image. With this
approach, multiple fixed reasoning components can be reused
across different questions, as opposed to simply learning a
direct mapping from question features to answer features as
the monolithic models do.

One interesting idea is to directly learn how to execute each
of the functions as modules, and simply execute the functional
program when given a new question and image pair. These
fixed reasoning modules can be chosen by the system designer,

and if represented by deep networks, can be independently
and easily trained in a supervised fashion, or trained end-
to-end. However, the problem still remains of how to map
from question and image to the exact functional program. In
this project, we investigate the use of sequence-to-sequence
(Seq2Seq) models to generate functional programs involving
visual reasoning modules to solve visual question answering
(VQA) problems.

II. RELATED WORK

A. Seq2Seq

Our models are mainly based on Seq to Seq model and
attention mechanism. Seq to Seq model was first proposed
in [1], which is originally used for end to end language
translation. It shows that Deep Neural Nets can be used
to perform “End to End” Translation and proposing a 2
LSTM (an “Encoder”- “Decoder”) architecture to do Langauge
Translation. The encoder takes the input sequence and maps it
to a fixed dimension vector while the decoder takes the output
vector from the encoder and maps it to the output sequence.

Attention is originally proposed in [2] , the purpose of
attention mechanism is to solve the problem in the original
Seq to Seq model, which the encoder processes the input
sequence and compresses the information into a fixed-length
context vector. A critical issue of this fixed-length context
vector design is incapability of remembering long sentences.
It often forgets the first part once it completes processing
the whole input. The attention mechanism was created to
improve memorizing long source sequence in neural machine
translation (NMT). Instead of building a single context vector
out of the encoder’s last hidden state, the attention layer create
shortcuts between the context vector and the entire source
sequence input. The weights of these shortcut connections can
be modified for each output element. The alignment between
the source and target sequence is also learned and controlled
by the context vector.

B. Modular VQA

Modular approaches are designed to solve VQA problems,
they explicitly decompose the reasoning process into a chain of
subtasks. A well-known Neural Module approach is the Neural
Module Network (NMN) [3], which is the model we will be
testing and evaluate on GQA, solves the question answering by
parsing questions into linguistic substructures and assembling



question-specific deep networks from smaller modules that
each solve one subtask. N2NMN(End-To-End Neural Module
Network) [4] is similar to the Neural Module Network, but
without using external parser. The N2NMN model builds
question-specific networks on the fly and executes the model.
During the optimization stage, the model uses reinforcement
learning to learn the policy for the non-differential portion
that can’t be optimized directly using back-propagation. Stack
Neural Module Networks [5] was later proposed, and is
based on the N2NMN, except that the layout policy is a soft
distribution on the modules options and select the best possible
module base on softmax, instead of making discrete choice like
the N2NMN; soft attention distribution are also placed among
the text words to extract the textual information for the selected
modules to execute on; therefore, the model doesn’t need end-
to-end reinforcement learning to train the layout policy since it
is fully differentiable, which can be trained using propagation.
There are more variants for the module approaches, the overall
architectures are similar, the main difference are mainly in the
layout policy, therefore we think by working on the Neural
Module Network, it would give us more insight to the behavior
of the parser and how it affects the layout modules selection.
In addition, our experiment uses a wider variety of modules
than those used in the original NMN paper.

C. Functional Programs in VQA

Functional Programs in Visual Question Answering are
recently gaining more attention to deal with more complex
multimodal training tasks. The original VQA datasets [6],[7]
do not annotate the questions with the functional programs,
but recent datasets have included these annotations. CLEVR
[8] is one of the datasets that the questions are represented as
functional programs that can be run to answer the question,
with the goal of enabling detailed analysis of visual reasoning.
The information in each image is complete and exclusive so
that commonsense knowledge can’t increase the chance of
answering questions correctly.The dataset minimize question-
conditional bias through rejection sampling within families of
related questions. The dataset also provides structured ground-
truth representations for both images and questions.

In this project, we use GQA dataset [9] to train and evaluate
our model. GQA is a new dataset for real-world visual reason-
ing and question answering, aiming to solve the issues in the
VQA datasets. The author have developed a robust question
engine that leverages information about objects, attributes
and relations provided through Visual Genome Scene Graphs,
along with a newly-created extensive linguistic grammar which
couples hundreds of structural patterns and detailed lexical
semantic resources.

III. PROBLEM FORMULATION

We formulate this problem as learning to map sequences
from one vocabulary to sequences in another, similar to
machine translation. Our input vocabulary consists of the
English words present in the GQA balanced training dataset.
Each of the questions in the GQA dataset is also annotated

Fig. 1. A histogram showing many times each operator appears in the GQA
training data

with the functional program containing the necessary
reasoning steps to answer the question. In total, there
are 12 unique operators in GQA: select, verify,
filter, relate, query, exist, choose,
same, common, different, and, or. Some of
these operations also take in natural language arguments
that are determined by the text of the question. For our
initial investigation, we chose to exclude these extra
keywords. However, in later models, we also included these
arguments (also referred to as ”keywords” in this report). The
frequencies with which these operators are used in the ground
truth functional programs of the GQA training questions are
shown in Figure 1.

Because the questions in GQA are already annotated with
the necessary functional programs, we can use a simple su-
pervised learning approach where the inputs are the questions,
and the labels come from the ground truth functional programs
included in GQA.

IV. MODELS

We implemented a number of models in our project, ranging
from a non-learned parser to a more complex attention-based
model to convert from the input questions to the output
functional programs.

A. Non-learned parser

As a baseline of sorts, we use the semantic parser from [3].
In their method, they first run the Stanford Tree Parser [10] on
input questions in order to obtain a typed tree representation of
the question, which also tags the words of the questions with
their corresponding parts of speech. Based on this tree, they
execute a custom parser to generate their ”module layouts”.
As stated in [4], this parser is rigid and often produces layouts
that don’t entirely make sense for the question. However, we
wanted to use this as it would provide a good non-learned
baseline to compare against our own approaches.

However, the NMN modules in the original paper do not ex-
actly correspond to the operators used in the GQA dataset. The
NMN modules are: find, relate, describe, and,



NMN Operator GQA operator
find select

find[NN, JJ] select, filter
find[NN, VBZ] select, relate

relate relate
is verify

describe query

TABLE I
OUR CONVERSIONS FROM NMN OPERATORS TO GQA OPERATORS

is. Because we lacked the expertise to write a semantic
parser from scratch that maps from the typed tree to all of
the GQA operators, we decided instead to convert from the
NMN operators to a roughly equivalent functional program
consisting of the GQA operators. These conversions also
depend on the parts of speech of the arguments taken in by
the NMN operators. The exact conversions are shown in Table
I. From our interpretation of their codebase, it is also unclear
how the arguments play into their layouts of the modules.
Therefore, we omit the keywords in the conversion, and only
convert from operators to operators. Note that because there
are fewer NMN operators than GQA operators, we only map
onto a subset of the GQA operators. Although the conversion
is not perfect, it does capture the most frequent operators in
the GQA dataset.

B. LSTM models

1) Conventional Seq2Seq: We first implement the basic
recurrent Seq2Seq model [1]. This model is composed of
two back-to-back recurrent models. One acts as en encoder,
mapping the input sequence into a latent space, and the other
takes this latent as an input and outputs a sequence from the
output vocabulary. We also use LSTMs instead of conventional
RNNs due to their superior performance.

First, we show the equations for the encoder. Given a
sequence of tokens X = [x1, x2 . . . xt] that represents
an input question of length t, we construct the latent vector z
as follows:

ei = Einput(xi)

hi, ci = LSTM(ei, hi−1, ci−1)

z = ht

Where hi is the hidden state, ci is the cell state, and ei is
the embedded token generated by Einput : R 7→ Rd, an
embedding function that maps from the integer tokens to a
d dimensional embedding space. These can be either one-
hot vectors or more complex word vectors such as GloVe
embeddings [?]. The hidden and cell vectors hi, ci have
dimensionalities that are hyperparameters of the model.

Theoretically, latent vector z contains a compressed repre-
sentation of all of the information in the question needed to
form the functional program / module layout. We can simply
pass this latent vector into the decoder in order to obtain the

functional program representation of the question. The decoder
is governed by equations similar to those of the encoder:

o0 = ”sos”
h0 = z

ei = Eoutput(oi−1)

hi, ci = LSTM(ei, hi−1, ci−1)

oi = f(hi)

Where ”sos” is the start of sequence token, Einput : R 7→ Rdo

maps from input tokens to an embedding space (not neces-
sarily the same one as the encoder) of dimensionality do, and
f is a fully-connected linear layer. Also of note is that the
decoder does not take in any external inputs besides a ”start
of sequence”, since the ground-truth functional programs are
not known ahead of time. For all of our models, because the
length of the functional programs are also not known by the
decoder, we also rely on them to produce an ”end” token at
the end of the sequence.

2) Double Decoder Model: One problem with the model
described in the previous section is that the arguments for the
functional program are drawn from a fundamentally different
vocabulary than the actual functional program modules. While
the keywords come from a natural language vocabulary similar
to that of the questions, the operators are contained in a
much smaller vocabulary of size 12. Therefore, it conceptually
doesn’t make sense to try to represent both the modules and
the keywords in the same embedding space. However, if we
separate the vocabularies, this means we cannot use a single
decoder anymore, since the embedding spaces are different.

To solve this problem, for our second type of model, we use
two decoders instead of one. One decoder is responsible for
generating the sequence of operators, and the other is respon-
sible for decoding a single keyword input to each operator. We
can exploit the structure in the functional programs to run these
decoders fully in parallel, since the functional program always
has the structure ”operator1: keyword1 → operator2:
keyword2...”.

These two decoders do not receive any information about
the other, since they use separate embeddings which are not
necessarily the same dimension. Information sharing between
these two parallel decoders is left up to future work, and would
require a more sophisticated scheme to bridge between the two
different embedding spaces.

3) Context Model: Another problem we sometimes observe
in both the basic RNN model and the double decoder model is
that the select operator is dominant as the first operator in
the functional program, and can cause problems in propagating
the information forward through the decoder. This problem can
manifest as overfitting the functional program because it loses
information about the source sequence in the process.

To combat this, we implement a modification to the de-
coders that allow them to incorporate information about the
source sequence across all timesteps. This involves incorpo-
rating a context vector into the input to the decoder at each
timestep. This idea is similar to the approach presented in [11].



Fig. 2. The double decoder Seq2Seq model with context vectors. The context
vectors are the arrows in red. For the normal double decoder model, they are
not included. The correct reading of the output of the decoder is ”select:
Object → query: Color”

With this modification, the input to the decoder wi and output
oi at each timestep is now:

ei = Eoutput(oi−1)

wi = [ei z]

hi, ci = LSTM(wi, hi−1, ci−1)

oi = f([ei hi z])

With this modification, the input wi is now a concatentation
of the embedding and the z vector, which is the final layer
from the encoder that now acts as a context vector throughout
the decoder. Also, the output oi is calculated as a function
of the concatentation of the embedding, hidden, and context
states. Our hypothesis is that including these extra vectors
will improve the performance by allowing the decoder to
remember the input context at each timestep. We use this
context augmentation specifically with our double decoder
models, so each parallel decoder receives the same context
vector from the encoder.

The double-decoder RNN-based model with context is
shown in Figure 2.

C. Attention based models

Transformer has been a popular architecture in the NLP
tasks nowadays, the architecture doesn’t involve recurrence nor
convolutional layers, but only rely on attention, linear layers
and layer normalization mechanism. We applied a transformer
model with two separate decoders, different from the original
transformer architecture in the paper attention is all you need,
we used a learned position encoding mechanism instead of
a static one, and also fixing the learning rate of the ADAM

optimizer; Moreover, we didn’t use label smoothing in our
task.

The architecture is a Seq to Seq model that involves encoder
and decoder stages, The source mask is created by checking
where the source sequence is not equal to a pad token. It is
1 if the token is not a pad token and 0 when it is. It is then
expanded so it can be broadcast when applying the mask to the
energy, in the shape of [batch size, number of heads, sequence
length, sequence length]. For the target mask, similar to the
source mask, we create a mask for the ¡pad¿ tokens, then we
create a ”subsequent” mask, which the elements above the
diagonal will all be zero and the elements below the diagonal
will be set to a value depending on what the input tensor is. In
our model, the input tensor will be a tensor filled with ones.

During the encoder part, the source sentence is not com-
pressed into a single context vector; instead, it produces a
sequence of context vectors depending on how many tokens
there are in the input sequence. Since recurrence layer isn’t
included in the transformer, a positional embedding layer is
applied. The input to this layer is not the token itself but the
position in the sequence sentence, we assigned the max vocab
the embedding layer 100, which means the sequence sentence
can have a max length of 100. The original transformer
in the paper uses static embedding, but since BERT uses
positional embedding and has achieve good results, we follow
the implementation and used the learned positional embedding
in this model. The token and positional embeddings are later
elementwise summed together to get a vector that contains
information about the tokens and also their position with in
the sequence.

In the next step, the source sequence and source mask is
passed to the encoder layers. The encoder layers first pass
the source and mask to the multi-head attention layers and
apply residual connection and passed it through the layer
normalization layer. The layer-normalization layers normalize
the values of the features across the hidden dimension, so
each feature has a mean of 0 and a standard deviation of 1.
This allows neural networks with a larger number of layers,
like the Transformer, to be trained easier. The attention layer
in the encoder apply attention over itself, in other words, its
performing self-attention during this phase.

In the decoder stage, the decoder takes the encoded repre-
sentation of the source sentence, and convert it into predicted
tokens in the target sentence, in our case, we applied two
separate decoder with the same structure, one for predicting
the operators and one for predicting the keywords arguments;
moreover, the decoder has two kinds of attention layers, a
masked multi-head attention layer over the target sequence,
and a multi-head attention layer which uses the decoder
representation as the query and the encoder representation as
the key and value.

In the decoder layers, they use the target sequence mask to
prevent the decoder from paying attention to tokens that are
”ahead” of the one it is currently processing as it processes
all tokens in the target sentence in parallel. In this multi-head
attention layer the queries are the decoder representations and



the keys and values are the encoder representations. Here, the
source mask is used to prevent the multi-head attention layer
from attending to pad tokens within the source sentence. This
is then followed by the dropout, residual connection and layer
normalization layers.

V. EXPERIMENTS

For our experiments, we evaluate 6 different methods and
models for predicting the module layouts. First, we evalu-
ate the non-learned parser from the NMN paper, with the
conversion described in Section 4A. Next, we evaluate the
basic Seq2Seq model that only predicts the operators/modules,
not the keywords (referred to as ”Seq2Seq (Ops)”). We also
evaluate a basic Seq2Seq model that jointly predicts operators
and keywords with a single decoder (”Seq2Seq (Joint)”). For
our double decoder models, we test one with and without
context (”DD” and ”DD + Context”). Finally, we also test an
attention model (”Attention”). For our Seq2Seq (Ops), DD,
and DD+Context models, we used pretrained GloVe 6B.100D
embeddings [12] for the encoder and keyword decoder. We
did not use GloVe embeddings for the Seq2Seq (joint) model
or Attention models.

All learned models are trained on the GQA balanced
training set, which consists of 900,000 questions. For our
quantitative tests, we used the first 10,000 questions in the
balanced validation set in GQA. Our methods for calculating
our quantitative metrics are discussed below.

A. Scoring Operator Prediction Accuracy

The evaluation metric we used for evaluating the operators is
a modified variant of the ROUGE metric [13] : Soft ROUGE.
The reason we design the metric based on the original ROUGE
is it calculates the longest common subsequences, which
values the order and the length of similarites. Since we expect
the operators to be concatenated in the correct order so that
we could have more confidence that the Neural Modules
Network layout can successfully select the right sub modules
and execute them, but also the correctness of each operators is
also important since every modules have different structures.
However, the original ROUGE metric doesn’t focus the sim-
ilarity of different words. Since some operators in GQA are
more similar than others (eg. filter and relate are more
similar than relate and verify), we design a similarity
matrix that define the similarity between the operators and
assign different score when calculating the longest common
subsequences.

B. Scoring Keyword Prediction Accuracy

Because the keywords are drawn from a much larger vo-
cabulary than the operators, using the Soft ROUGE metric
will not work for scoring the keywords. In addition, because
a sequence of keywords does not follow grammatical conven-
tions, we cannot use conventional scoring methods such as
BLEU, which are intended for. Therefore, we adopt a simpler
metric of comparing the distances of the predicted keywords
from the model and the ground truth keywords in the GloVe

Fig. 3. SoftRouge score of models averaged over test questions. This metric
tests operator prediction accuracy. Higher is better.

embedding space, where distances between the word vectors
are meaningful. In cases where the model’s predicted sequence
of keywords is too short, we pad the sequences with zero
vectors, which also serves to penalize predicted sequences with
incorrect length.

VI. RESULTS

A. Quantitative Results

Our quantitative results on part of the GQA validation
question set are shown in Figures 3 and 4. We can see that
for the task of predicting operators, the Seq2Seq (Ops) model
has the highest average Soft ROUGE score of 0.88. This
is to be expected, since this model has the easiest task of
only predicting the operators without keywords. The Attention
model performs similarly in this regard, achieving an average
score of 0.87. Both double decoder models perform better
than the semantic parser, but fall short of the performance
demonstrated by the Seq2Seq (Ops) model and Attention
models when predicting operators. Predictably, the Seq2Seq
(Joint) model exhibits the worst performance in predicting
operators, due to the fact that it also must incorporate the
keywords into the same decoder vocabulary.

When predicting the keywords, we see that the DD+Context
model performs the best, suggesting that incorporating the
context vector aids in the prediction of keywords, and the
normal DD model performs worse. Somewhat surprisingly, the
Attention model actually has a poor performance in this regard.
This could be due to the fact that GloVe embeddings were
not used when training the Attention Model. As predicted, the
Seq2Seq (Joint) model falls far short in performance compared
to the double decoder models.

B. Qualitative Results

We also include some qualitative results on five questions
selected from the GQA balanced validation set in Tables II,
III, IV. These questions were unseen during the training of the
models. These questions range from long to short, and require
some different reasoning sequences.



Fig. 4. Average GLoVe distance between predicted keywords and ground
truth keywords, per program. Lower is better.

TABLE II
Q: ”IS THERE ANY SURFBOARD TO THE RIGHT OF THE MAN THE PEOPLE

ARE STANDING BY?”

Model Predicted Layout
Ground truth select: people → relate:man → relate: surfboard →

exist
NMN Parse find[’there’, ’by’] → ’find’[’is’, ’there’] → ’and’ →

’is’
Seq2Seq (Ops) select → relate → relate → exist
Seq2Seq
(Joint)

select: people → relate: man → relate: surfboard →
exist

DD select: people → relate: man → relate: surfboards →
exist

DD+Context select: people → relate: man → relate: surfboard →
exist

Attention select: people → relate: man → relate: surfboard →
exist

The normal Seq2Seq models tend to struggle with the
shorter questions, such as in Table IV, possibly because they
overfit to always choosing select → verify for these
questions. The Attention model has strong performance in
predicting operators, but sometimes predicts the incorrect
keywords. Meanwhile both double decoder models fall in the
middle in terms of performance, but including the context
improves the results in terms of predicting both the operators
and keywords. The NMN semantic parser produces some sane
results in its own vocabulary, but struggles with selecting the
correct keywords. We still need to do more investigation to
understand the sources of the differences in the performance
of the Attention model. However, these are promising results
that suggest that Seq2Seq models can be used for a variety of
questions to lay out reasoning sequences.

VII. DISCUSSION AND CONCLUSIONS

Our qualitative and quantitative results show promising
results; even a simple model can predict layouts that are close
to the ground truth programs, although introducing additional
complexity into the models does improve the performance.
However, our results do come with some caveats. Due to

TABLE III
Q: ”DO ALL OF THESE PEOPLE HAVE THE SAME GENDER?”

Predicted Layout
Ground Truth select: person → same: gender
NMN Parse find[’people’, ’gender’] → find[’do’, ’people’] → and

→ is
Seq2Seq (Ops) select → same
Seq2Seq
(Joint)

select: person → same: gender

DD select: people → select: <None> → different
DD + Context select: person →same: <None>
Attention select: person →same: <None>

TABLE IV
Q: ”WHO IS WEARING GOGGLES?”

Predicted Layout
Ground Truth select: goggles → relate: person →query: name
NMN Parse find’[’is’, ’goggles’] →describe[’goggles’, ’who]
Seq2Seq (Ops) select → verify
Seq2Seq
(Joint)

select: scene → verify: place

DD select: goggles → filter: rel → verify
DD + Context select: goggles → relate: <None> → query: name
Attention select: goggles → relate: person → query: name

computational restrictions, we were unable to do full hyperpa-
rameter tuning on our models. Therefore, our results actually
act as a lower bound for the performance achievable with
Seq2Seq models. In addition, during training we observed
that including pretrained GloVe embeddings improved the
performance of the models, suggesting that if we also used
the pretrained embeddings for the Attention model, its per-
formance in predicting keywords would exceed those of the
recurrent models.

Future work includes using our Seq2Seq models in a full
pipeline with the models that are able to execute the functional
operators in order to actually answer the questions. In addition,
further evaluation on datasets such as the original VQA and
CLEVR datasets is necessary so we can understand if our
method is able to generalize to datasets with a different
distribution of questions.

REFERENCES

[1] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” 2014.

[2] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2017.

[3] J. Andreas, M. Rohrbach, T. Darrell, and D. Klein, “Neural module
networks,” 2017.

[4] R. Hu, J. Andreas, M. Rohrbach, T. Darrell, and K. Saenko, “Learning to
reason: End-to-end module networks for visual question answering,” in
Proceedings of the IEEE International Conference on Computer Vision
(ICCV), 2017.

[5] R. Hu, J. Andreas, T. Darrell, and K. Saenko, “Explainable neural
computation via stack neural module networks,” 2019.

[6] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L. Zitnick,
and D. Parikh, “VQA: Visual Question Answering,” in International
Conference on Computer Vision (ICCV), 2015.

[7] Y. Goyal, T. Khot, D. Summers-Stay, D. Batra, and D. Parikh, “Making
the V in VQA matter: Elevating the role of image understanding in
Visual Question Answering,” in Conference on Computer Vision and
Pattern Recognition (CVPR), 2017.



[8] J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei, C. L. Zitnick,
and R. Girshick, “Clevr: A diagnostic dataset for compositional language
and elementary visual reasoning,” 2016.

[9] D. A. Hudson and C. D. Manning, “Gqa: A new dataset for real-world
visual reasoning and compositional question answering,” 2019.

[10] M.-C. de Marneffe, B. MacCartney, and C. D. Manning, “Generating
typed dependency parses from phrase structure trees,” in LREC, 2006.
[Online]. Available: http://nlp.stanford.edu/pubs/LREC06 dependencies.
pdf

[11] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning phrase representations using RNN encoder-
decoder for statistical machine translation,” CoRR, vol. abs/1406.1078,
2014. [Online]. Available: http://arxiv.org/abs/1406.1078

[12] J. Pennington, R. Socher, and C. Manning, “GloVe: Global vectors
for word representation,” in Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP). Doha,
Qatar: Association for Computational Linguistics, Oct. 2014, pp. 1532–
1543. [Online]. Available: https://www.aclweb.org/anthology/D14-1162

[13] C.-Y. Lin, “ROUGE: A package for automatic evaluation of summaries,”
in Text Summarization Branches Out. Barcelona, Spain: Association for
Computational Linguistics, Jul. 2004, pp. 74–81. [Online]. Available:
https://www.aclweb.org/anthology/W04-1013

http://nlp.stanford.edu/pubs/LREC06_dependencies.pdf
http://nlp.stanford.edu/pubs/LREC06_dependencies.pdf
http://arxiv.org/abs/1406.1078
https://www.aclweb.org/anthology/D14-1162
https://www.aclweb.org/anthology/W04-1013

	Introduction
	Related Work
	Seq2Seq
	Modular VQA
	Functional Programs in VQA

	Problem Formulation
	Models
	Non-learned parser
	LSTM models
	Conventional Seq2Seq
	Double Decoder Model
	Context Model

	Attention based models

	Experiments
	Scoring Operator Prediction Accuracy
	Scoring Keyword Prediction Accuracy

	Results
	Quantitative Results
	Qualitative Results

	Discussion and Conclusions
	References

